丁建均教授的個人資料 - Profile of Jian-Jiun Ding

丁建均 Jian-Jiun Ding

國立臺灣大學電機工程學系 教授
國立台灣大學電信工程學研究所 教授
Professor, Department of Electrical Engineering, National Taiwan University
Professor,Graduate Institute of Communication Engineering, National Taiwan University

主要研究領域:

數位信號處理、數位影像處理

Major Research Areas:

Digital Signal Processing, Digital Image Processing

研究領域摘要:

1. 數位影像處理

  包括物件識別,模糊影像還原,顯著區域偵測, 影像分割,角與邊緣偵測,影像壓縮,浮水印,影像加密 

2. 影像壓縮  

  包括熵編碼理論,靜態與動態影像壓縮,多媒體壓縮技術

3. 時頻分析

  包括韋格納分佈方程式,加伯轉換,短時傅立葉轉,希爾伯特黃轉換,壓縮感知

4. 人工智慧與機器學習

  包括機器學習的理論,以及其在人臉偵測、表情辨識、物件辨識上之應用

5. 分數傅立葉轉換 及 線性完整轉換

  簡而言之,分數傅立葉轉換是做零點幾次的傅立葉轉換,分數傅立葉轉換是傅立葉轉換的一般化,線性完整轉換是分數傅立葉轉換的進一步一般化,這些都是先進的信號處理技術

6. 音樂及聲音信號處理

   包括歌聲檢索,聲音去噪,聲紋分析

7. 小波轉換

8. 整數轉換 

   以設計出不需浮點運算,且適合於低成本的硬體的演算法為目標

9. 生物資訊學

   用信號處理的方法處理基因比對的問題

10. 信號分析
  包括心電圖分析, 數論,分碼多重存取,特徵函數與扁平波函數的問題 

11. 其他
   包括四元素,非線性及時變系統分析數位濾波器設計

Research Summary:

1. Digital Image Processing 

     including pattern recognition, image deblurring, saliency detection, image segmentation, corner and edge detection, watermark and encryption

2. Image Compression  

    including entropy coding, still image and video compression, multimedia compression techniques

3. Time-Frequency Analysis

      including Wigner distribution functions, Gabor transforms, short-time Fourier transforms, Hilbert-Huang transforms, compressive sensing

4. Artificial Intelligence and Machine Learning

    including theories of machine learning and their applications in face detection, expression recognition, and object recognition

5. Fractional Fourier Transform and Linear Canonical Transform

      In a word, the fractional Fourier transform is doing the Fourier transform x times where x can be non-integer. The fractional Fourier transform is a generalization of the Fourier transform. The linear canonical transform is a further generalization of the fractional Fourier transform. These are advanced digital signal processing techniques.

6. Music and Acoustics

    including query by humming, denosing for vocal signals, voiceprint analysis 

7. Wavelet Transform

8. Integer Transform

    The goal is to develop the operations that needs no floating-point processor and are suitable for low-cost hardware implemetation 

9. Bioinformatics

    using the method of signal processing for DNA sequence comparison

10. Signal Analysis

     including eigenfunctions and prolate spheroidal wave function, CDMA, number theory

11Others

      including ECG signal analysis, quaternion, non-linear and time-variant system analysis, digital filter design     

 

 

 

Photo of Jian-Jiun Ding

代表性著作 Selected Publication

  1. J. J. Ding and S. C. Pei, “Eigenfunctions and self-imaging phenomena of the 2-D non-separable linear canonical transform,” J. Opt. Soc. Am. A, vol. 28, no. 2, pp. 82-95, Feb. 2011
  2. S. C. Pei and J. J. Ding, “Fractional Fourier transform, Wigner distribution, and filter design for stationary and non-stationary random processes,” IEEE Trans. Signal Processing, vol. 58, no. 8, pp. 4079-4092, Aug. 2010
  3. S. C. Pei and J. J. Ding, “Generalized commuting matrices and their eigenvectors for DFTs, offset DFTs, and other periodic operations,” IEEE Trans. Signal Processing, vol. 56, no.8, pp. 3891-3904, Aug. 2008
  4. S. C. Pei and J. J. Ding, “Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing,” IEEE Trans. Signal Processing, vol. 55, no. 10, pp. 4839-4850, Oct. 2007
  5. S. C. Pei and J. J. Ding, “Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms,” J. Opt. Soc. Am. A, vol. 22, no. 3, pp. 460-474, Mar. 2005