由於問題極度複雜、牽涉到大量的變數,傳統上研究巨觀隨機介質的光學性質常用近似解(例如: Diffusion Approximation, Monte Carlo method, etc.) ,然而此種近似解的精確度和可信度有待商榷。如今應用新的演算法(Pseudospectral time-domain method),使用電腦平行計算的技術,如今這個問題已經可以由數值方法解Maxwell’s equations 而得到精確解。
研究目標是:「以虛擬光學實驗,探究生醫光學的新發展」
歡迎優秀、有理想、肯努力參與光學模擬研究的新生加入!
其中,一個很重要的應用是在於精確地分析生物組織的光學性質。生醫光電是現代科技發展的重點之一,然而欲發展光學篩檢癌症的技術,必須先對正常以及病變的生物組織的光學性質有精確的瞭解,才能針對其光學性質相異之處進行分析和篩檢。利用新的演算法研究方法以平行電腦做模擬,本研究將致力於分析巨觀隨機介質生物組織(包括生物組織)的光學性質,進而幫助促進生醫光電新技術的研發。
隨著電腦科技的快速發展,以模擬分析研發光學特性越來越受重視,在業界也是如此。然而,懂得光學模擬程式設計的人才很稀少。也許,「光學模擬」可以作為你未來的強項?
My research is focused on computer simulations to study the phenomena of light scattering by macroscopic random media. Conventional approach mostly uses diffusion approximation, Monte Carlo simulation, etc., since such problems are extremely complex to solve. By using a new algorithm, the pseudo-spectral time-domain method, combined with parallel computing technology, this problem can be accurately studied by solving Maxwell's equations now.
In particular, I am most interested in bio-optics research. Currently my research is focused on understanding the optical characteristics of macroscopic random media, the next step would be to investigate optical properties of biological media, based on Maxwell's equations. In summary, my current research interest is: By numerically solving Maxwell's equations, to obtain microscopic geometrical information from macroscopic scattered light from (biological) random media.